
Astro 201; Project Set #1
due friday, 2/03/2012

Problems focusing on the fundamental concepts of radiation (inten-
sity, flux, opacity), and on solving on the radiation transfer equation
under simple conditions. Emphasis is on the directional dependence
of the specific intensity – no real concern is given yet to the detailed
microphysics of the opacity and emission processes.

1) M87 and a “Continuum" of Stars

In the center of the Virgo cluster, about 16 megaparsecs
away, lies the most massive elliptical galaxy in our neighborhood,
M87 (see Figure 1). It consists of a pretty much spherical distribution
of old stars spread out over a radius of around 10 kiloparsecs. At
the center is a supermassive black hole – an active galactic nucleus
(AGN) – which powers a relativistic jet.

Figure 1: CFHT image of the massive
elliptical galaxy M87.

M87 is a rich venue of radiative processes which we’ll come back
to later the class. For now, we’ll just develop an overly simple model
of the stellar radiation. Model the galaxy as N = 1010 stars uniformly
spread out in a sphere of radius Rg = 10 kiloparsecs. We’ll approx-
imate each star as a hard, completely opaque sphere with a mass,
radius, and effective temperature equal to the solar values.

a) What is the average separation distance between the stars, in par-
secs and in arcseconds? We’ll assume that the smallest scale that can
be resolved by an observer (or any other relevant galactic length scale
for that matter) is significantly larger then this. In this case, we can
imagine the stars to be a continuous medium (as we might do for,
say, atoms in a gas).

b) Write down expressions for the cross-section, opacity, and extinc-
tion coefficient of our "stellar gas". How does the numerical value of
this stellar opacity compare to a typical astrophysical value (e.g., the
electron scattering opacity of ionized hydrogen)?

c) What is (numerically) the optical depth of the “stellar gas", τ?,
from the center of the galaxy to the edge? Given your result, you can
assume from now on that the galaxy is optically thin1, i.e., τ? � 1. 1 Of course, this is the optical depth

to stars only; interstellar dust or gas
spread throughout a galaxy may be
optically thick at certain wavelengths.
We won’t worry about that now.

d) Write down an expression for the frequency integrated emission
coefficient j (units ergs s−1 cm−3 str−1) of the "stellar gas". What is
the source function, and how does it compare to what you would
expect for a thermal source?
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e) Integrate the radiative transfer equation to determine the light
profile of the galaxy – i.e., the specific intensity I(p) as a function of
the impact parameter p at which it is viewed at infinity (see figure 2).
This quantity is closely related to the surface brightness profile of the
galaxy.

Figure 2: Diagram of the simple toy
model of an ellipsoidal galaxy.

f) Integrate the specific intensity I(p) over the entire projected area of
the galaxy to determine the flux detected on earth. Compare to the
result you expect by just summing up the luminosity of all the stars
and dividing by 4πd2, where d = 16 Mpc is the distance to M87.

g) Let’s calculate the radiation field throughout the galaxy produced
by the stars. We’ll solve the problem exactly in a second, but first
orient yourself by writing down simple expressions (derived in a line
or two) which give an order of magnitude estimate of the radiation
energy density u? and flux 2 F? from stars in some typical part of the 2 Given the spherical symmetry here,

when we say “the flux" we of course
implicitly mean the radial component
of the flux vector.

galaxy.

h) Now the exact solution: integrate the specific intensity to derive
expressions for the mean intensity, J?(r), the energy density u?(r)
and the flux F?(r) of the radiation field from stars, all as a function of
radius.3. To simplify the integration, you can limit your treatment to 3 You’ll probably want to use the ”law

of cosines".the inner regions of the galaxy where r � Rg. If you feel like tackling
the full integral, you might consult the online mathematica integrator
or some other tool.

i) Plot your findings for u?(r) and F?(r) as a function of radius. De-
rive the values at the galactic center (r = 0) and explain why your
result is obviously correct at this point. Also explain why it makes
sense that u?(r) decreases with radius, while F?(r) increases with
radius.

j) The radiation field from stars will heat interstellar gas and dust.
Define a radiation “temperature" T by setting your calculated radia-
tion energy density u?(R) equal to the energy density of a blackbody,
aT4. If interstellar dust in the galaxy was warmed to approximately
this temperature4, at around what wavelengths would you look for 4 This is the temperature gas or dust

would be heated to if it was in equilib-
rium with the stellar radiation and the
opacity was wavelength independent

the dust emission?

http://integrals.wolfram.com/index.jsp
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Project #2: Stellar Limb Darkening and Exoplanet Transits

The first detection of an extra-solar planet transiting

its star was HD 209458b (Charbonneau et al. 2000 ) – a hot, jupiter-
sized planet orbiting ∼ 0.05 AU from its host star. The orientation
of the system is such that the planet briefly eclipses the star when it
passes in front of it, as seen in the original photometric data:

Figure 3: First data on a transit-
ing expolanet, HD209568b, from
Charbonneau et al., 2000 . Filled
circles show the data binned into 5

minute intervals. The lines show model
light curves (which include the limb-
darkening effect) a summing different
planetary radii.

You’ll notice something interesting in the data – the dip in the
transit light curve is curved, not flat-bottomed. This is because of the
limb-darkening effect – i.e., light emitted from the edge of a star is
less intense than light coming from the center. This effect has been
known for over a hundred years from observations of the sun (see
Figure 4). To accurately determine the properties of a transiting exo-
planet (e.g., orbital inclination, planet radius) stellar limb-darkening
must be taken into account.

Modeling stellar limb-darkening is one of the classic problems in
theoretical astrophysics, going back to Schwarzchild’s solution in
1906 and subsequent work by Eddington and Milne.5 In this project, 5 You can find Milne’s 1921 paper on

limb darkening here .we’ll derive a workable model for exoplanet transit light curves by
solving the radiation transport equation (ala Schwarzchild) to ac-
count for limb darkening.

Figure 4: The sun, showing limb dark-
ening (also limb-reddening)

The Limb Darkening Problem

Limb darkening arises because the light from the edge of the star
is seen at a slant with respect to the normal vector (see figure 5).
To quantify the effect, we will need to solve the radiation transfer
equation to determine the dependence of the specific intensity on the
angle (µ = cos θ) at which it is observed. The atmospheres of stars
like the sun are very thin compared to the radius, so we can use the

http://iopscience.iop.org/1538-4357/529/1/L45/pdf/995832.web.pdf
http://adsabs.harvard.edu/abs/2000ApJ...529L..45C
http://adsabs.harvard.edu/abs/1921MNRAS..81..361M
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radiative transfer equation in plane parallel coordinates:

µ
∂Iν(τz, µ)

∂τz
= Iν(τz, µ)− Sν(τz, µ) (1)

We might think of this as not just one equation, but an infinite num-
ber of differential equations – one for each different frequency ν and
direction µ. To make the problem tractable, we’ll have to make sev-
eral typical approximations.

Approximation #1: The opacity is wavelength independent (grey)

Rg

μ

μ
τ = 0

z

Figure 5: Geometry for the problem. To
find the specific intensity observed near
the edge of a spherical star (top) we
solve the problem for a plane parallel
atmosphere (bottom) and find the
intensity emerging at the equivalent
angle to the normal, µ = cos θ.

In this case, we can drop the ν subscripts in equation 1 and only use
quantities that have been integrated over all frequencies. Of course,
we can not also drop the µ dependence (i.e., assume the radiation
is isotropic) as that would miss the essential physical effect behind
limb-darkening. We can simplify life, though, by adopting a rela-
tively simple form for the angular dependence:

Approximation #2: The angular distribution of I can be described by

I(τz, µ) = I0(τz) + I1(τz)µ (2)

where we require I0 > I1 > 0 for all τz (so that the intensity never
goes negative). This expression is obviously an over-simplification of
the angular dependence of I, which could in principle be a compli-
cated function6 of µ. By specifying this simple form, however, we will 6 At least equation 2 captures one

crucial feature: more radiation is
moving out of the star (µ > 0) then
inward (µ < 0). Our expression
actually represents the appropriate limit
in the optically thick diffusion regime,
as we will discuss later.

no longer need to solve an infinite number of transport equations; in-
stead, we’ll only need two equations to determine the two unknowns:
I0 (the isotropic part) and I1 (the anisotropic part).

a) Write down expressions (in terms of I0, I1) for the mean intensity
J(τz) and the astrophysical flux F(τz). For fun, also write down the
radiation energy density u(τz) and pressure P(τz). What is the ratio
P/u and how does it compare to that of isotropic radiation?7. 7 The ratio f = P/u is called the

Eddington factor and the assumption
f = 1/3 is called the Eddington
approximation. It holds not only for
isotropic radiation, but also for any
I(τz, µ) that only depends on odd
powers of µ, such as ours.

Now we’ll solve the radiation transfer equation. Since there are two
unknowns (I0 and I1) we’ll use two moments of the transfer equation
to form a complete system of equations:

b) Take the zeroth moment of the radiation transport equation (i.e.,
integrate equation 1 over all angles) and show that the source func-
tion is given by S = J provided we make another assumption:

Approximation #3: The atmosphere is in radiative equilibrium8, such that 8 In the early days, it was not known
whether the atmosphere of the sun was
in radiative equilibrium or whether it
was convective. By solving this problem
we’ll show (as Schwarzchild did in
1906) that the observed limb darkening
implies that it is indeed radiative.

the flux, F0 = σT4
eff, is constant with τz.

c) Take the first moment of the transport equation and use it to find
an expression for I(τ, µ) which depends on two constants: Teff, and
some constant of integration.

To determine the constant of integration, we need to specify some
kind of boundary condition. We’ll make another approximation:
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Approximation #4: At the surface of the star (τ = 0) the inward directed
flux (i.e. integrated only over the directions −1 < µ < 0) is zero.

This is one of several approximate boundary conditions that might be
chosen. It captures our intuition that the light is streaming out of the
stellar surface, but none is streaming inward.

d) Determine the integration constant to complete the solution. Now
that you know everything, you should be able to plot the limb dark-
ening law for the relative emergent intensity as a function of µ. Com-
pare9 your solution to the early observations taken by Muller (1897) 9 You might also compare with your

solution for problem 1d, which gives
the “limb-darkening" of an optically thin,
homogenous radiating sphere.

shown in Figure 6. Does your calculation indeed suggest that the
solar atmosphere is radiative?

Figure 6: Solutions for the limb dark-
ening law assuming a radiative and a
convective atmosphere. Also shown are
early observations from Muller (1897).
Adapted from K. Schwarzschild (1906)
by J. Aufdenberg . The y-axis plots the
ratio I(τ = 0, µ)/I(τ = 0, µ = 1). Note
that Schwarzschild made slightly differ-
ent approximations than we have, and
so derived a slightly different solution
(I ∝ µ + 1/2, shown as the blue line).
Your solution will actually fit the data
better.

Explaining the Planetary Transit Data

At last we can model (approximately) the light curve of HD209568b.
Assume the orbit has an inclination of 90◦ (i.e., is exactly edge on as
viewed from earth) and that the duration of the transit is 0.12 days.
For our purposes, you can make the approximation that the radius
of the planet Rp is much less than that of the star, R? (i.e., no need
to integrate over the size of the planet). In this case, you won’t get
the sharp edges of the light curve quite right, when the planet moves
on or off the stellar disk (the ingress and egress marked by w on
figure 7).

e) Write an expression for the transit light curve – i.e., the observed
flux as a function of time (no need to worry about the overall normal-

http://nexsci.caltech.edu/workshop/2006/talks/Aufdenberg.pdf
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ization of the flux; just the relative value as in Figure 3 is fine). Plot
your light curve and compare by eye to the observed data in Figure 3.

Comment: You will notice that your light curve has significantly
more curvature than the data shown in Figure 3. That is because
the inclination of HD209568b is not exactly 90◦ and the planet does
not pass exactly along the mid-plane, rather it grazes its host star,
as illustrated in figure 7. Bonus: By thinking a little more about
the geometry, work out how to use a measurement of the curvature
parameter c (defined in figure 7) to determine the inclination of the
orbit, based on your equation for limb-darkening (and assuming the
stellar and orbital radius are given by other means).

Figure 7: Schematic of the shape of the
light curve from an expolanet transit,
taken from Brown et al., (2001) .

Explaining the Sun’s Red Edge

Notice in Figure 2 that the edge of the sun also looks redder then
the center, which is a closely related effect. Let’s calculate how much
redder. To do so we’ll make a further assumption:

Approximation #5: The atmosphere is in LTE, so that the source function
S(τ) is everywhere equal to the blackbody value.

e) Write an expression for the temperature of the atmosphere as a
function of τz (and depending on Teff)10. Now assume that when 10 Your (approximate) solution for the

temperature structure of a radiative
atmosphere can be quite a useful one
for certain problems.

you look at the star at some angle µ, you see roughly a blackbody
spectrum at the temperature at a line of sight optical depth of ' 2/3.
If the effective temperature of the Sun is Teff = 5800 K, how much
“cooler” is the spectrum of radiation from the edge (µ = 0) compared
to the center (µ = 1)?

Comment: If we wanted to derive a more accurate solution for the
limb darkening problem, we could write the angular dependence of
I(τz, µ) as an expansion in Legendre polynomials:

I(τz, µ) = ∑
i=0

Ii(τz)Pi(µ) (3)

What you have done is to solve the problem when keeping only the
first two terms in this series. For each additional higher order term
you include, a new unknown is introduced and you would need to
take another higher moment of the transfer equation to complete the
system of equations.11 11 See Chandrasekhar’s 1960 book for

more. Since the radiation field does not
usually oscillate very rapidly with µ,
you could probably get away with only
the first few terms in the series.

Comment: There are other approximate ways of representing the
angular dependence of I. In the two-stream approximation we assume
that the intensity has one value going up, and another value going
down:

I(τz, µ) = I+(τz)Θ(0, π/2) + I−(τz)Θ(π/2, π) (4)

http://adsabs.harvard.edu/abs/2001ApJ...552..699B
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where Θ(x1, x2) = 1 for x1 < x < x2 and 0 otherwise. Bonus: If you
felt like it, you should be able to use this functional form to solve the
transport equation using a similar approach described above.

The generalization of the two stream approximation would be an
n-stream approximation:

I(τz, µ) =
n

∑
i

IiΘ(µi, µi + ∆µi) (5)

Where we would choose the angles µi and ∆µi to give a favorable
spacing of the n rays. You should easily convince yourself that
J = ∑i Ii∆µi/2. Assuming radiative equilibrium (J = S) the set of
radiative transfer equations then become:

µi
∂Ii(τz)

∂τz
= Ii −

1
2

n

∑
i

Ii∆µi (6)

This is just a system of n coupled linear differential equations which
in principle can be solved (numerically) to determine the Ii(τz). The
higher n, the more accurate the solution. This sort of method of dis-
crete ordinates is a common approach to solving radiation transport
problems on computers.

Bonus (optional) problem – Astro 201: the real world

Increase your car remote range with your face!

We’ve all had the experience of being lost in a parking lot,
trying to find our car by clicking the key remote repeatedly and
hoping to hear a beep or see a flash. Well, now an old friend from
high school presents the following unlikely lifehack12: Hold your car 12 You can read his blog post ; you can

also check out some of his clever ideas
on how to defeat the government

remote against your chin when you push the button and you will
increase its range.

That sounded ridiculous, so I tried it myself. I found the maxi-
mum distance at which my remote would work (about 30 feet) then I
held the remote to my chin and took several steps back. It worked! I
was able to get several feet more range. Try it yourself!

So I had to hand it to my friend. Still, his explanation of the effect
(“the water in your head acts like a huge radio antennae”, boosting
the signal) seemed pretty bogus to me. What do you, Astro201 stu-
dent, think the real explanation for the extended range is? What is
the theoretical maximum factor by which you might boost your range
using this kind of trick?

http://www.scrollinondubs.com/2005/09/14/lifehack-using-your-car-alarm-panic-button-to-locate-a-lost-vehicle/
http://www.scrollinondubs.com/2006/12/19/the-vehicular-thomas-crowne-affair-how-to-creatively-defeat-photo-radar/

	1) M87 and a ``Continuum" of Stars
	Project #2: Stellar Limb Darkening and Exoplanet Transits
	Bonus (optional) problem – Astro 201: the real world

